3,045 research outputs found

    Probing the Radio Loud/Quiet AGN dichotomy with quasar clustering

    Get PDF
    We investigate the clustering properties of 45441 radio-quiet quasars (RQQs) and 3493 radio-loud quasars (RLQs) drawn from a joint use of the Sloan Digital Sky Survey (SDSS) and Faint Images of the Radio Sky at 20 cm (FIRST) surveys in the range 0.3<z<2.30.3<z<2.3. This large spectroscopic quasar sample allow us to investigate the clustering signal dependence on radio-loudness and black hole (BH) virial mass. We find that RLQs are clustered more strongly than RQQs in all the redshift bins considered. We find a real-space correlation length of r0=6.590.24+0.33h1Mpcr_{0}=6.59_{-0.24}^{+0.33}\,h^{-1}\,\textrm{Mpc} and r0=10.951.58+1.22h1Mpcr_{0}=10.95_{-1.58}^{+1.22}\,h^{-1}\,\textrm{Mpc} {\normalsize{}for} RQQs and RLQs, respectively, for the full redshift range. This implies that RLQs are found in more massive host haloes than RQQs in our samples, with mean host halo masses of 4.9×1013h1M\sim4.9\times10^{13}\,h^{-1}\,M_{\odot} and 1.9×1012h1M\sim1.9\times10^{12}\,h^{-1}\,M_{\odot}, respectively. Comparison with clustering studies of different radio source samples indicates that this mass scale of 1×1013h1M\gtrsim1\times10^{13}\,h^{-1}\,M_{\odot} is characteristic for the bright radio-population, which corresponds to the typical mass of galaxy groups and galaxy clusters. The similarity we find in correlation lengths and host halo masses for RLQs, radio galaxies and flat-spectrum radio quasars agrees with orientation-driven unification models. Additionally, the clustering signal shows a dependence on black hole (BH) mass, with the quasars powered by the most massive BHs clustering more strongly than quasars having less massive BHs. We suggest that the current virial BH mass estimates may be a valid BH proxies for studying quasar clustering. We compare our results to a previous theoretical model that assumes that quasar activityComment: 15 pages, 13 figures, A&A in pres

    Ordering in the dilute weakly-anisotropic antiferromagnet Mn(0.35)Zn(0.65)F2

    Full text link
    The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated by neutron scattering in zero field. The Bragg peaks observed below the Neel temperature TN (approximately 10.9 K) indicate stable antiferromagnetic long-range ordering at low temperature. The critical behavior is governed by random-exchange Ising model critical exponents (nu approximately 0.69 and gamma approximately 1.31), as reported for Mn(x)Zn(1-x)F2 with higher x and for the isostructural compound Fe(x)Zn(1-x)F2. However, in addition to the Bragg peaks, unusual scattering behavior appears for |q|>0 below a glassy temperature Tg approximately 7.0 K. The glassy region T<Tg corresponds to that of noticeable frequency dependence in earlier zero-field ac susceptibility measurements on this sample. These results indicate that long-range order coexists with short-range nonequilibrium clusters in this highly diluted magnet.Comment: 7 pages, 5 figure

    Magnetism and Electronic Correlations in Quasi-One-Dimensional Compounds

    Full text link
    In this contribution on the celebration of the 80th birthday anniversary of Prof. Ricardo Ferreira, we present a brief survey on the magnetism of quasi-one-dimensional compounds. This has been a research area of intense activity particularly since the first experimental announcements of magnetism in organic and organometallic polymers in the mid 80s. We review experimental and theoretical achievements on the field, featuring chain systems of correlated electrons in a special AB2 unit cell structure present in inorganic and organic compounds

    Fingerprinting the magnetic behavior of antiferromagnetic nanostructures using remanent magnetization curves

    Full text link
    Antiferromagnetic (AF) nanostructures from Co3O4, CoO and Cr2O3 were prepared by the nanocasting method and were characterized magnetometrically. The field and temperature dependent magnetization data suggests that the nanostructures consist of a core-shell structure. The core behaves as a regular antiferromagnet and the shell as a two-dimensional diluted antiferromagnet in a field (2d DAFF) as previously shown on Co3O4 nanowires [Benitez et al., Phys. Rev. Lett. 101, 097206 (2008)]. Here we present a more general picture on three different material systems, i.e. Co3O4, CoO and Cr2O3. In particular we consider the thermoremanent (TRM) and the isothermoremanent (IRM) magnetization curves as "fingerprints" in order to identify the irreversible magnetization contribution originating from the shells. The TRM/IRM fingerprints are compared to those of superparamagnetic systems, superspin glasses and 3d DAFFs. We demonstrate that TRM/IRM vs. H plots are generally useful fingerprints to identify irreversible magnetization contributions encountered in particular in nanomagnets.Comment: submitted to PR

    Spatial Mixing and Non-local Markov chains

    Full text link
    We consider spin systems with nearest-neighbor interactions on an nn-vertex dd-dimensional cube of the integer lattice graph Zd\mathbb{Z}^d. We study the effects that exponential decay with distance of spin correlations, specifically the strong spatial mixing condition (SSM), has on the rate of convergence to equilibrium distribution of non-local Markov chains. We prove that SSM implies O(logn)O(\log n) mixing of a block dynamics whose steps can be implemented efficiently. We then develop a methodology, consisting of several new comparison inequalities concerning various block dynamics, that allow us to extend this result to other non-local dynamics. As a first application of our method we prove that, if SSM holds, then the relaxation time (i.e., the inverse spectral gap) of general block dynamics is O(r)O(r), where rr is the number of blocks. A second application of our technology concerns the Swendsen-Wang dynamics for the ferromagnetic Ising and Potts models. We show that SSM implies an O(1)O(1) bound for the relaxation time. As a by-product of this implication we observe that the relaxation time of the Swendsen-Wang dynamics in square boxes of Z2\mathbb{Z}^2 is O(1)O(1) throughout the subcritical regime of the qq-state Potts model, for all q2q \ge 2. We also prove that for monotone spin systems SSM implies that the mixing time of systematic scan dynamics is O(logn(loglogn)2)O(\log n (\log \log n)^2). Systematic scan dynamics are widely employed in practice but have proved hard to analyze. Our proofs use a variety of techniques for the analysis of Markov chains including coupling, functional analysis and linear algebra

    Deep LOFAR 150 MHz imaging of the Bo\"otes field: Unveiling the faint low-frequency sky

    Get PDF
    We have conducted a deep survey (with a central rms of 55μJy55\mu\textrm{Jy}) with the LOw Frequency ARray (LOFAR) at 120-168 MHz of the Bo\"otes field, with an angular resolution of 3.98×6.453.98^{''}\times6.45^{''}, and obtained a sample of 10091 radio sources (5σ5\sigma limit) over an area of 20deg220\:\textrm{deg}^{2}. The astrometry and flux scale accuracy of our source catalog is investigated. The resolution bias, incompleteness and other systematic effects that could affect our source counts are discussed and accounted for. The derived 150 MHz source counts present a flattening below sub-mJy flux densities, that is in agreement with previous results from high- and low- frequency surveys. This flattening has been argued to be due to an increasing contribution of star-forming galaxies and faint active galactic nuclei. Additionally, we use our observations to evaluate the contribution of cosmic variance to the scatter in source counts measurements. The latter is achieved by dividing our Bo\"otes mosaic into 10 non-overlapping circular sectors, each one with an approximate area of 2deg2.2\:\textrm{deg}^{2}. The counts in each sector are computed in the same way as done for the entire mosaic. By comparing the induced scatter with that of counts obtained from depth observations scaled to 150MHz, we find that the 1σ1\sigma scatter due to cosmic variance is larger than the Poissonian errors of the source counts, and it may explain the dispersion from previously reported depth source counts at flux densities S<1mJyS<1\,\textrm{mJy}. This work demonstrates the feasibility of achieving deep radio imaging at low-frequencies with LOFAR.Comment: A\&A in press. 15 pages, 16 figure

    Sensitive VLBI Continuum and H I Absorption Observations of NGC 7674: First Scientific Observations with the Combined Array VLBA, VLA & Arecibo

    Full text link
    We present phase-referenced VLBI observations of the radio continuum emission from, and the H I 21 cm absorption toward, the Luminous Infrared Galaxy NGC 7674. The observations were carried out at 1380 MHz using the VLBA, the phased VLA, and theArecibo radio telescope. These observations constitute the first scientific use of the Arecibo telescope in a VLBI observation with the VLBA. The high- and low-resolution radio continuum images reveal several new continuum structures in the nuclear region of this galaxy. At ~100 mas resolution, we distinguish six continuum structures extending over 1.4 arcsec, with a total flux density of 138 mJy. Only three of these structures were known previously. All these structures seem to be related to AGN activity. At the full resolution of the array, we only detect two of the six continuum structures. Both are composed of several compact components with brightness temperatures on the order of 10710^{7} K. While it is possible that one of these compact structures could host an AGN, they could also be shock-like features formed by the interaction of the jet with compact interstellar clouds in the nuclear region of this galaxy. Complex H I absorption is detected with our VLBI array at both high and low angular resolution. Assuming that the widest H I feature is associated with a rotating H I disk or torus feeding a central AGN, we estimate an enclosed dynamical mass of ~7 x 10^7 M_sun, comparable to the value derived from the hidden broad Hβ\beta emission in this galaxy. The narrower H I lines could represent clumpy neutral hydrogen structures in the H I torus. The detection of H I absorption toward some of the continuum components, and its absence toward others, suggest an inclined H I disk or torus in the central region of NGC 7674.Comment: 37 pages, 11 figures. ApJ accepted. To appear in the Nov. 10, 2003 issue of ApJ. Please use the PDF version if the postscript doesn't show the figure

    Must Organic certification fundamentally change for an Organic World?

    Get PDF
    Organic guarantee systems have evolved drastically in the past, accompanying changes in the uptake of Organic agriculture. From an originally fully stakeholder-driven and participatory process in the '70s and '80s, organic certification has become increasingly formalized and government-controlled. organic certification is a must-have for organic market access in more and more countries in the world, but is often not seen by producers to add much value beyond that. It claims to bring transparency and trust to the consumers, but it also delegates the judgment of agricultural practices to more or less anonymous entities. Certification is not designed to prevent fraud but it is expected to control and detect it. Organic certification and regulations are supposed to be tools to develop organic markets but at the same time create barriers to organic trade. Requirements for organic certification are continuously increasing and becoming more complex, yet organic certification is not seen as more reliable than it was a decade ago. Finally, standard setters are torn between the society's expectation that organic certification cover a wider range of sustainability topics, and the fear that more onerous requirements will inhibit conversion to Organic. All these paradoxes are becoming increasingly apparent as the organic movement reflects on how to scale up Organic Agriculture from a niche to the mainstream way of farming
    corecore